八年级数学教学反思

时间:2024-06-16 23:22:20
八年级数学教学反思(15篇)

八年级数学教学反思(15篇)

作为一名优秀的教师,我们要有一流的课堂教学能力,借助教学反思我们可以快速提升自己的教学能力,教学反思要怎么写呢?以下是小编帮大家整理的八年级数学教学反思,欢迎阅读与收藏。

八年级数学教学反思1

我们常有这样的困惑:不仅是讲了,而且是讲了多遍,可是学生的解题能力就是得不到提高!也常听见学生这样的埋怨:巩固题做了千万遍,数学成绩却迟迟得不到提高!这应该引起我们的反思了。诚然,出现上述情况涉及方方面面,但其中的例题教学值得反思,数学的例题是知识由产生到应用的关键一步,即所谓“抛砖引玉”,然而很多时候只是例题继例题,解后并没有引导学生进行反思,因而学生的学习也就停留在例题表层,出现上述情况也就不奇怪了。

孔子云:学而不思则罔。“罔”即迷惑而没有所得,把其意思引申一下,我们也就不难理解例题教学为什么要进行解后反思了。事实上,解后反思是一个知识小结、方法提炼的过程;是一个吸取教训、逐步提高的过程;是一个收获希望的过程。从这个角度上讲,例题教学的解后反思应该成为例题教学的一个重要内容。本文拟从以下三个方面作些探究。

一、在解题的方法规律处反思

“例题千万道,解后抛九霄”难以达到提高解题能力、发展思维的目的。善于作解题后的反思、方法的归类、规律的小结和技巧的揣摩,再进一步作一题多变,一题多问,一题多解,挖掘例题的深度和广度,扩大例题的辐射面,无疑对能力的提高和思维的发展是大有裨益的。

例如:(原例题)已知等腰三角形的腰长是4,底长为6;求周长。我们可以将此例题进行一题多变。

变式1已知等腰三角形一腰长为4,周长为14,求底边长。(这是考查逆向思维能力)

变式2已等腰三角形一边长为4;另一边长为6,求周长。(前两题相比,需要改变思维策略,进行分类讨论)

变式3已知等腰三角形的一边长为3,另一边长为6,求周长。(显然“3只能为底”否则与三角形两边之和大于第三边相矛盾,这有利于培养学生思维严密性)

变式4 已知等腰三角形的腰长为x,求底边长y的取值范围。

变式5 已知等腰三角形的腰长为X,底边长为y,周长是14。请先写出二者的函数关系式,再在平面直角坐标内画出二者的图象。(与前面相比,要求又提高了,特别是对条件0﹤y﹤2x的理解运用,是完成此问的关键)

再比如:人教版初三几何中第93页例2和第107页例1分别用不同的方法解答,这是一题多解不可多得的素材(AB为⊙O的直径,C为⊙O上的一点,AD和过C点的切线互相垂直,垂足为D。求证:AC平分∠DAB)

通过例题的层层变式,学生对三边关系定理的认识又深了一步,有利于培养学生从特殊到一般,从具体到抽象地分析问题、解决问题;通过例题解法多变的教学则有利于帮助学生形成思维定势,而又打破思维定势;有利于培养思维的变通性和灵活性。

二,在学生易错处反思

学生的知识背景、思维方式、情感体验往往和成人不同,而其表达方式可能又不准确,这就难免有“错”。例题教学若能从此切入,进行解后反思,则往往能找到“病根”,进而对症下药,常能收到事半功倍的效果!

有这样一个曾刊载于《中小学数学》初中(教师)版20xx年第5期的案例:一位初一的老师在讲完负负得正的规则后,出了这样一道题:—3×(—4)= ?,A学生的答案是“9”,老师一看:错了!于是马上请B同学回答,这位同学的答案是“12”,老师便请他讲一讲算法:……,下课后听课的老师对给出错误的答案的学生进行访谈,那位学生说:站在—3这个点上,因为乘以—4,所以要沿着数轴向相反方向移动四次,每次移三格,故答案为9。他的答案的确错了,怎么错的?为什么会有这样的想法?又怎样纠正呢?如果我们的例题教学能抓住这一契机,并就此展开讨论、反思,无疑比讲十道、百道乃至更多的例题来巩固法则要好得多,而这一点恰恰容易被我们所忽视。

计算是初一代数的教学重点也是难点,如何把握这一重点,突破这一难点?各老师在例题教学方面可谓“千方百计”。例如在上完有关幂的性质,而进入下一阶段——单项式、多项式的乘除法时,笔者就设计了如下的两个例题:

(1)请分别指出(—2)2,—22,—2-2,2-2的意义;

(2)请辨析下列各式:

① a2+a2=a4

②a4÷a2=a4÷2=a2

③-a3 ·(-a)2 =(-a)3+2 =-a5

④(-a)0 ÷a3=0

⑤(a-2)3·a=a-2+3+1=a2

三、解后笔者便引导学生进行反思小结.

(1)计算常出现哪些方面的错误?

(2)出现这些错误的原因有哪些?

(3)怎样克服这些错误呢?

同学们各抒己见,针对各种“病因”开出了有效的“方子”。实践证明,这样的例题教学是成功的,学生在计算的准确率、计算的速度两个方面都有极大的提高。

八年级数学教学反思2

课堂教学方法的选择是课堂教学效率高低的关键。课堂教学中所采用的方法要符合教学内容,符合学生数学学习的认识规律和一般教学原则。现代社会信息渠道的多元化必然导致学生获取知识渠道的多元化。

数学课堂教学必须改变一味以书本、教师为中心的形象,从实施素质教育的高度出发,通过多种教学形式,将学生学习能力的培养有机地渗透到整个教学过程中去。为此,教师应努力探寻行之有效的教学方法和手段,营造丰富多彩的教学氛围,充分调动学生学习的积极性。教师可采用“启发式”、“学导式”教学法。首先,教师要发挥自己的指导作用,做到深入浅出,画龙点睛,一语道破,起到指导作用,以达到“导”在关键上的目的。其次,在学习课前预习,划出难点,带着问题听课时,或学生在自学中遇到了困难,迫切需要教师解难答疑时,教师应及时进行指导,把握好关键时刻,恰到好处,这时学生的思想集中、全神贯注、认真听讲,可收到最好的效果。当然,除备好课外,教师还应精心设计,分析哪些材料让学生自学;哪些材料由教师精讲;哪些材料用讲练结合形式进行;考虑精讲火候;研究怎样才以讲深讲透,讲得条理分明,深入浅出,使讲解富于启发性。教师要在课堂教学过程中注重教法的设计,运用多种教学手段创设真实的语言学习情境,扩大语言的输入量;以清晰、准确的示范,或文本演示帮助学生理解、操练和活用语言;让学生在积极参与语言实践中扎实地掌握知识,形成技巧,发展能力,尝试成功,从而获得课堂教学的高效率。教学过程要有流畅性。教师要注意教学环节的连接是否符合教学规律,教学活动与活动之间的转换是否恰当合理。在转换之间,教师的指令是否清楚。学生是否能够在教师有目的、有计划的指导下积极主动参与各项教学活动。教学要讲究生动性,要求教学过程充满变化,充分调动学生的兴趣,引 ……此处隐藏11177个字……意识和探索欲望;不仅重过程而且重结果,重应用。课前我精心设计探究计划,选择和组织恰当的教学材料;在指导教学过程中,把注意力集中在学生身上,不停地做出各种判断,激发和鼓励学生的学习探究;提问不仅有序、有提示、有鼓励、有启发、问在有疑之处.同时引导学生注意了这几点:(1)指数相加而不是相乘(2)负数、分数乘方加括号(3)法则逆用要灵活(4)指数不写是1。本课的主要教学任务是“同底数幂乘法的运算性质”,即同底数幂相乘,底数不变,指数相加。在课堂教学时,通过幂的意义引导学生探索发现得出这一性质,这一过程比较顺利,效果满意。学生在完成教材中的例

一、例二时,正确率较高。为了加深对这一性质的理解,也将同底数幂乘法、乘方运算以及整式加减集中运算经行辨析,学生基本上也能辨认清楚。在此基础上接着对于同底数幂乘法法则的逆运用进行探索,以上的教学环节,实施流畅,效果满意。

回顾这一节课,这节课在教学过程的进度把握的比较好,而且条理比较清晰,课堂气氛很好,基本达到教学目标。但还存在一些不足。例如后面的练习题的设计,缺乏新颖,没有难度的变化,而且形式比较单一,不能更好的调动学生的积极性。忘记了返回刚开始情景导入中遗留的未解决的问题。另外课堂语言要注意规范和简练。

在以后的教学中,首先制定一节课的教学目标时,要根据学生的实际情况,先完成教材的基本要求,对于进一步挖掘教材而延伸的知识点则要注意难度。其次在课堂教学中,练习题的设计要有变式,要有梯度。立足基本目标,精讲多练,在学生熟练掌握后,再组织学生探索一些特殊题型和解题技巧。作为一名新老师,缺乏丰富的教学经验,这需要在以后的教学过程中,多向老教师学习,多听课,多进行反思。多学习教学理论,争取在课堂教学形式上有所突破。

八年级数学教学反思13

这一课主要的教学任务是探究反比例函数的比例系数k的几何意义,研究与反比例函数有关的面积问题。

课堂设计程序是:

例题1研究从双曲线上任意一点P作坐标轴的垂线,围成的长方形PQOR的面积与k的关系,进而进行题目的变化,得到从双曲线上任意一点P作x、y轴的垂线三角形PQO的面积与k的关系,得到从双曲线上任意一个动点P作坐标轴的垂线,围成的长方形S1、S2、S3的面积总有S1=S2=S3;

例题2揭示了正比例函数的图象与反比例函数的图象两个交点的关系(关于原点对称),过两个交点并且垂直于坐标轴的直线围成的矩形的面积(等于k的绝对值的4倍),进而进行题目的变化,得到几种三角形的面积和平行四边形的面积,由学生及时进行相应的练习;

例题3把一次函数与反比例函数相结合,进行了比较简单的综合应用,让学生进行面积的和差组合,培养学生分析问题解决问题的能力。

在学生进行到反比例函数的研究时,数形结合的思想就能够应用自如了,学生的学习情况还是比较好的。回想起来,还是结合个方面的知识内容,用待定系数法求函数的解析式的题目类型学生的达成率不够好,要加强这方面的训练。

利用待定系数法求反比例函数的解析式是学生必会内容,本课教学有一次函数的基础,所以学生学习起来并不感到有多困难的。因此,本课在学习用待定系数法求函数的解析式的前面安排函数性质的复习,学习和巩固“在每个象限内”的反比例函数的增减情况的有关应用问题,例如第4小题,A(a,b),B(a-1,c)在反比例函数y=k/x(k<0)的图象上,探究a的各种不同的取值情况下,b与c的大小关系。

用待定系数法求反比例函数的解析式,安排了两个例题两个练习,题量不多重在使学生自主学习,这里着重加强对数形结合思想的应用,培养学生通过图形研究问题的习惯,另外,例题2需要学生结合三角形全等的几何知识解决点的坐标的探究,去年期末考试的最后一道试题也是在平面直角坐标系下几何问题的研究,学生不是很熟悉的,因此,培养学生各种背景下数学问题的研究很有必要。

由于在上面两块内容上用了很多时间,本课对比例系数k的几何意义没有作研究,安排在下一课再作学习。

八年级数学教学反思14

课程改革的关键是教师观念的改变,重视学生的主体作用,强调让学生经历学习的过程,让学生真正成为学习的主人。教师不应该仅仅是课程的实施者,而且应该成为课程的创造者和开发者。

根据建构主义情境教学理论,任何知识的教学,应该以学生原有的知识和经验为起点,创设激发学生的学习动机,并蕴涵数学知识的学习情境,因此本节课按照“情境—问题”的教学模式展开教学,教学过程分七个环节:1看一看2说一说3练一练4议一议5用一用6小结7作业,教学在一种轻松愉快的环境中完成,而且取得了很好的教学效果。我创设了“看一看”中的沙漏这一问题情境,调动了学生的学习积极性。在课本乘火车谈车速、路程和时间的基础上设计了“说一说”中的秋游,打电话等学生熟悉的场景,让学生感受常量和变量。“议一议”以学生合作探究活动为主,为学生提供了动手、动口、动眼、动脑的机会,引导学生进行数学思考,体现“做数学”的理念,充分展现了知识的形成过程,从而突破本节课的难点即函数概念的理解。

教学设计中,始终把对知识的学习与师生的共同活动与交流相结合,把对知识的理解放置在具体情景中,采用了多种形式的学习活动,给学生足够的、自主的空间和活动机会,使学生动手、动脑进行探索,在合作与交流中,体会常量与变量的意义,理解函数的概念,发展抽象概括能力。数学强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程。通过设计有层次“练一练”、“用一用”使学生进一步巩固对常量、变量及函数概念的理解,并在此基础上获得总结提升。使学习成为在教师引导下学生主动构建富有个性的学习过程。

八年级数学教学反思15

这节课我感觉较好的方面是课堂气氛比较活跃,本节课我比较倾向于让学生了解黄金分割,感受生活中所存在的数学艺术,调节一下之前比较枯燥的学习心情,找了很多观赏性的图片,以及生活中与黄金分割有关的内容,所以学生感觉很新奇,积极性也很高。

这里主要说说不足的地方,其中最大的问题在于对教材内容把握不够,概念的理解分析不到位,这点可以从课堂练习和课后作业的反馈情况看出。首先黄金分割的概念没有讲得很清楚。重要的三个比值没有强调到位:较长线段与整条线段的比值是 、较短线段与较长线段的比值是 、较短线段与整条线段的比值是 、两点(黄金分割点)之间的距离与整条线段的比值是 。其次黄金分割中的分类讨论的思想也由于时间的限制没有渗透。所以学生对概念理解不是很深刻,课堂练习屡屡出错,课后作业也出现不少问题。

北师大版的教材对于我这种经验不是很丰富的老师来说确实是个挑战,内容看似简单,实际包含很多知识点,如果仅仅按教材上课,是远远不够的。因为学生现有的能力有限,如果没有老师的指导,很难进行应用。所以潜心钻研教材是很有必要的,上课之前可以先问问有经验的老师这节课要注意的东西,把握好知识点。

除此之外,除了精心备课,还要关注学生课堂上的参与程度也是很重要的,根据学生的状态适时调节讲授方式会使课堂效率更高。

《八年级数学教学反思(15篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式